Machine Learning

Machine Learning

About this course

Skip Course Description

Machine Learning is the basis for the most exciting careers in data analysis today. You’ll learn the models and methods and apply them to real world situations ranging from identifying trending news topics, to building recommendation engines, ranking sports teams and plotting the path of movie zombies.

Major perspectives covered include:

  • probabilistic versus non-probabilistic modeling
  • supervised versus unsupervised learning

Topics include: classification and regression, clustering methods, sequential models, matrix factorization, topic modeling and model selection.

Methods include: linear and logistic regression, support vector machines, tree classifiers, boosting, maximum likelihood and MAP inference, EM algorithm, hidden Markov models, Kalman filters, k-means, Gaussian mixture models, among others.

In the first half of the course we will cover supervised learning techniques for regression and classification. In this framework, we possess an output or response that we wish to predict based on a set of inputs. We will discuss several fundamental methods for performing this task and algorithms for their optimization. Our approach will be more practically motivated, meaning we will fully develop a mathematical understanding of the respective algorithms, but we will only briefly touch on abstract learning theory.

In the second half of the course we shift to unsupervised learning techniques. In these problems the end goal less clear-cut than predicting an output based on a corresponding input. We will cover three fundamental problems of unsupervised learning: data clustering, matrix factorization, and sequential models for order-dependent data. Some applications of these models include object recommendation and topic modeling.

Hide

What you’ll learn

  • Supervised learning techniques for regression and classification
  • Unsupervised learning techniques for data modeling and analysis
  • Probabilistic versus non-probabilistic viewpoints
  • Optimization and inference algorithms for model learning

View Course Syllabus

Meet the instructor

  • bio for Professor John W. Paisley

    Professor John W. Paisley

    Department of Electrical EngineeringColumbia University

Pursue a Verified Certificate to highlight the knowledge and skills you gain ($300)

View a PDF of a sample edX certificate

  • Official and Verified

    Receive an instructor-signed certificate with the institution’s logo to verify your achievement and increase your job prospects


  • Easily Shareable

    Add the certificate to your CV or resume, or post it directly on LinkedIn


  • Proven Motivator

    Give yourself an additional incentive to complete the course


  • Support our Mission

    EdX, a non-profit, relies on verified certificates to help fund free education for everyone globally

Enroll Nowin Machine Learning

[Source:- EDX]